ALPIC 2019

Advanced Learning on Platelets & Thrombosis International Course

22-24/March 2019 Diasselo Conference Center METSOVO - GREECE

How to Approach Anticoagulant Treatment in Patients with End Stage Renal Disease

Michail Papafaklis, MD, PhD, FESC

Interventional Cardiologist, University Hospital of Ioannina Honorary Consultant Cardiologist, St Bartholomew's Hospital, London, UK

ALPIC 2019

Advanced Learning on Platelets & Thrombosis International Course

22–24/March 2019 Diasselo Conference Center

METSOVO - GREECE

Disclosure No conflict of interest

Stages of Chronic Kidney Disease

	Stage	Description	GFR (mL/min/1.73 m ²)			
	1	Kidney damage with normal or GFR	≥ 90			
	2	Kidney damage with mild GFR	89-60			
Chronic Kidney Disease	ЗA	Mild to moderate GFR	59-45			
	ЗB	Moderate GFR	45-30			
	4	Severe GFR	30-15			
	5	Kidney failure	< 15 or dialysis			
	ESRD: End Stage Renal Disease					

Renal Association (www.renal.org). Accessed Feb 2019

CKD and ESRD patients

Simultaneously Prothrombotic and Haemorrhagic

Prothrombotic Risk

- Prothrombotic changes in the vascular endothelium
- Increase in coagulation factors (fibrinogen, factor VIII and von Willebrand factor) as part of chronic inflammation
- Increase in antifibrinolytic proteins (plasminogen activator inhibitor)
- Hyperlipidaemia which predisposes patients to cardiovascular thrombosis
- Haemoconcentration with effects on blood rheology
- Changes in platelet membrane ⇒ proaggregatory

Hughes S et al. *Clin Kidney J.* 2014; 7:442-449 Lau et al. *J Am Coll Cardiol*. 2016; 68: 1452-64

CKD and ESRD patients

Simultaneously Prothrombotic and Haemorrhagic

• Haemorrhagic Risk

- Platelet dysfunction
 - Uremic toxins inhibit release of platelet factors
 - Impaired GP IIb/IIIa receptor activation
- Anaemia which can impact on the interaction of platelets with the vessel wall
- Stress ulcers
- Need for frequent interventions
- Drugs (antiplatelets and frequent heparin exposure)

Exacerbated Risk for Stroke and Bleeding in AF and ESRD Epidemiological Data

- Patients with ESRD requiring renal replacement therapy
 - Double the risk to experience stroke and thromboembolism compared to patients without renal dysfunction
 - Relative risk of intracerebral hemorrhage >10-fold higher

TABLE 2 Epidemiological Insight Into Stroke Risk in Patients With AF and CKD							
First Author (Year) (Ref. #)	Study Type	N	Findings				
Go et al. (2009) (55)	Retrospective	10,908 AF with CKD	Compared with GFR \geq 60 ml/min/1.73 m ² : eGFR: 45-59 ml/min; RR: 1.16 (95% CI: 0.95-1.40) eGFR <45 ml/min; RR: 1.39 (95% CI: 1.13-1.71) (p = 0.0082 for trend).				
Friberg et al. (2012) (138)	Retrospective	182,678 AF patients (8,113 with CKD)	CKD stage 1 and below: multivariate HR: 1.11 (95% CI: 0.99-1.25)				
Olesen et al. (2012) (56)	Retrospective	132,372 AF patients (3,587 with NDD CKD; 901 with ESRD)	Compared with GFR ≥90 ml/min/1.73 m ² : NDD CKD HR: 1.49 (95% CI: 1.38-1.59) ESRD, HR: 1.83 (95% CI: 1.57-2.14)				
Guo et al. (2013) (18)	Prospective	617 AF patients	Risk of stroke or death: HR: 2.90 (95% CI: 1.88–4.48) Risk of stroke in 6 months: Absolute decrease in eGFR ≥25 ml/min/1.73 m ² : HR: 2.77 (95% CI: 1.26–6.09) Relative decrease in eGFR ≥25%: HR: 2.57 (95% CI: 1.14–5.80)				
Roldán et al. (2013) (61)	Prospective	978 AF patients on VKA	Every decrease in eGFR of 30 ml/min/1.73 m ² : HR: 1.42 (95% CI: 1.11-1.83)				
Bonde et al. (2014) (57)	Retrospective	154,254 nonvalvular AF patients (148,598 with NRD; 4,519 with NDD; 1,142 receiving RRT)	Compared with GFR ≥60 ml/min/1.73 m ² : NDD CKD, HR: 1.32 (95% CI: 1.23-1.42) RRT, HR: 2.01 (95% CI: 1.74-2.33)				
Chao et al. (2014) (139)	Retrospective	10,999 AF patients with ESRD in Taiwan	11.7% of patients experienced ischemic strokeAbsolute stroke and thromboembolism event rate:6.9/100 patient-years				
Banerjee et al. (2014) (140)	Prospective	8,962 AF patients (2,982 with CKD)	Compared with GFR ≥60 ml/min/1.73 m ² : eGFR 30-59 ml/min HR: 1.53 (95% CI: 1.10-2.12) eGFR <30 ml/min HR: 1.78 (95% CI: 0.99-3.19)				
CI = confidence interval; HR = hazard ratio; NDD = nondialysis-dependent; RR = relative risk; RRT = renal replacement therapy; other abbreviations as in Table 1.							

Lau et al. J Am Coll Cardiol. 2016; 68: 1452-64

Pursuing "Net Clinical Benefit" with Anticoagulation in AF and ESRD

Balance the risks of ischemic stroke and bleeding on oral anticoagulation

- CHA₂DS₂-VASc score determines thromboembolic risk (≥2 threshold for anticoagulation)
 - Score derived from non-renal patients
 - Moderate-severe renal impairment not included as a factor
 - May not be valid in ESRD
- HAS-BLED score to formally assess the bleeding risk and enable risk stratification
 - Abnormal renal function included in the score (? vs ESRD)
 - Correct potentially reversible risk factors for bleeding
 - ESRD is a non-modifiable factor for bleeding

Anticoagulation for AF in Dialysis Patients

ANTICOAGULATION IS NOT UNIVERSALLY ACCEPTED

- 2005 Guidelines from Kidney Disease Improving Global Outcomes (KDIGO)
 - Do not recommend warfarin for primary prevention of stroke in ESRD and NVAF
 - Recommendation for warfarin for secondary prevention of stroke
- AHA 2014 Guidelines
 - CHAD2DS2-VASc score ≥2: reasonable to consider anti-coagulation with warfarin (IIb)
- Canadian Cardiovascular Society 2014 Guidelines
 - Recommend not routinely anti-coagulating non-valvular AF in patients with eGFR <30 ml/min or on dialysis
- ESC 2016 Guidelines EHRA 2015 Consensus documents
 - Lack of data on VKAs and NOACs
 - They suggest the use of warfarin but with debatable benefit
 - NOACs not recommended for CrCl <15 ml/min

McCullough PA et al. *Clin J Am Soc Nephrol.* 2016; 11:2079-2084 Muster H and Alcorn H. *Am J Nephrol.* 227-228

Anticoagulation in Dialysis Patients Available Randomized Data

Randomized Trials assessing OAC in haemodialysis patients

Controlled trials of NOACs in patients with severe CKD (CrCl <25-30 ml/min)

Oral Anticoagulation in CKD/ESRD: Vitamin K Antagonists

 Prescription of oral anticoagulants in patients with severe renal impairment varies

• UNCERTAINTY about the risks and benefits of VKA anticoagulation in this patient group

AF pts with ESRD

- Conflicting findings from observational studies
- Equivocal results about efficacy and safety of VKAs
- Potential harm from VKA use in some studies
- Higher risk of hemorrhagic stroke than thromboembolic events
- Good quality anticoagulation with TTR>70% is vital

Lau et al. J Am Coll Cardiol: 2016; 68: 1452-64

TABLE 3 VKA Use and Stroke	TABLE 3 VKA Use and Stroke Rates in ESRD						
First Author (Year) (Ref. #)	Study Type	Number (% With AF)	Findings				
Wiesholzer et al. (2001) (103)	Retrospective observational	430 (14.3%)	Stroke rate/100 patient-years: AF with VKA: 4.46 AF without VKA: 1.0				
Abbott et al. (2003) (95)	Retrospective observational	3,374 (1.25%)	3-year survival rate: AF with VKA: 70% AF without VKA: 55%				
Chan et al. (2009) (104)	Retrospective observational	48,825 (3.42%)	90-day HR: AF with VKA: 1.93 (95% Cl: 1.29-2.90)*				
Wizemann et al. (2010) (105)	Observational (DOPPS)	17,513 (12.5%)	Stroke rate in subjects >75 yrs of age: Warfarin user: 2.17 (95% Cl: 1.04-4.53)				
Phelan et al. (2011) (106)	Retrospective	845 requiring dialysis (141 on warfarin)	Stroke rate/100 patient-years: VKA user: 1.7 vs. non-VKA user: 0.7 ($p = 0.636$) Major hemorrhage rate/100 patient-years: VKA user: 10.8 vs. non-VKA user: 8.0 ($p = 0.593$)				
Winkelmayer et al. (2011) (107)	Retrospective observational	2,313 ESRD patients with new AF	HR for ischemic stroke: VKA user 0.92 (95% Cl: 0.61-1.37) HR for hemorrhagic stroke: VKA user 2.38 (95% Cl: 1.15-4.96)				
Olesen et al. (2012) (56)	Subgroup analysis	901 patients with AF requiring dialysis	HR compared with no antithrombotic agent, dialysis- dependent patients: VKA: 0.44 (95% Cl: 0.69–1.01)				
Knoll et al. (2012) (100)	Prospective	235 patients on dialysis (19.6% on VKA)	No stroke or bleed experienced HR for mortality in VKA user: 0.80 (95% CI: 0.28-2.29)				
Sood et al. (2013) (108)	Observational (DOPPS)	41,844 (9.71%)	Stroke rate/100 patient-years: VKA: 3.3 No VKA or antiplatelet: 2.1†				
Bonde et al. (2014) (57)	Retrospective	154,254 nonvalvular AF patients (1,142 on RRT and 260 receiving VKA)	Stroke and thromboembolic risk in non-VKA users: HR: 1.82 (95% CI: 1.58-2.12)‡				
Shah et al. (2014) (109)	Retrospective	1,626 patients with AF on RRT (756 VKA users)	HR for ischemic stroke comparing VKA vs. non-VKA users: 1.14 (95% CI: 0.78-1.67) HR for bleeding: 1.44 (95% CI: 1.13-1.85)				
Chen et al. (2014) (102)	Retrospective	500 with AF and ESRD (250 receiving VKA)	Compared with control group (no VKA or antiplatelet agent): HR for ischemic stroke: 1.017 (95% CI: 0.673-1.537)				
Wakasugi et al. (2014) (110)	Prospective	60 Japanese patients with AF requiring dialysis (28 VKA users)	Comparing VKA vs. non-VKA users HR for ischemic stroke: 3.36 (95% Cl: 0.67–16.66)				
Chan et al. (2015) (98)	Retrospective	271 patients with AF on peritoneal dialysis (70 on VKA)	Comparing VKA vs. aspirin users: HR for ischemic stroke: 0.16 (95% Cl: 0.04–0.66) Comparing VKA vs. nonusers of antithrombotic agents: HR for ischemic stroke: 0.19 (95% Cl: 0.06–0.65)				
Findlay et al. (2015) (99)	Retrospective	1.382 patients with ESRD, of whom 293 with AF (118 on VKA; 175 without VKA)	Stroke rate: AF with VKA: 11.4% AF without VKA: 14.4%				
Genovesi et al. (2015) (97)	Prospective	290 patients with AF requiring dialysis (134 on VKA at recruitment)	Comparing VKA vs. non-VKA users: HR for stroke/thromboembolic events: 0.12 (95% Cl: 0.00-3.59)				
Shen et al. (2015) (101)	Retrospective	12,284 patients on RRT (1,383 started on VKA)	Comparing VKA vs. non-VKA users: HR for ischemic stroke: 0.68 (95% CI: 0.47-0.99) HR for mortality: 0.84 (95% CI: 0.73-0.97)				

*AF with VKA covariate adjusted model: adjusted for CHADS₂ (congestive heart failure, hypertension, age \geq 75 years, diabetes mellitus, prior stroke, transient ischemic attack [TIA], or thromboembolism) score, sex, race, Charlson comorbidity index, entry date, body mass index, facility standardized mortality ratio, cardiovascular drugs, dialysis adequacy, baseline laboratory values, heparin dosage, and heparin regimes. †VKA users include patients with AF, thromboembolic disease, or central vascular catheter. ‡Adjusted for aspirin treatment and all risk factors included in CHA₂DS₂-VASc (congestive heart failure, hypertension, age \geq 75 years, diabetes mellitus, prior stroke, transient ischemic attack [TIA], or thromboembolism, vascular disease [prior myocardial infarction, peripheral arterial disease or aortic plaque], age 65-74 years, sex category [female]) score.

DOPPS = Dialysis Outcomes and Practice Pattern Study; VKA = vitamin K antagonist; other abbreviations as in Tables 1 and 2.

openheart Efficacy and safety of warfarin in dialysis patients with atrial fibrillation: a systematic review and meta-analysis

MORTALITY

Source	Sample Size	Favors Non- Warfarin Therapy	Favors Warfarin Therapy	HR IV, Random (95% Cl)	Weight, %
Abbott et al ²³ , 2003	123 🔶			0.36 (0.16, 0.82)	1.71
Chan et al ²⁴ , 2009	1,400	-		1.10 (0.93, 1.30)	22.11
Winkelmayer et al ²⁵ , 2011	1 1,185	_		1.06 (0.90, 1.24)	23.13
Bonde et al ²⁶ , 2014	1,680		-	0.98 (0.80, 1.18)	18.71
Genovesi et al ³¹ , 2015	290			0.96 (0.59, 1.56)	4.52
Shen et al ³³ , 2015	3,658	-	F	0.93 (0.81, 1.05)	27.95
Wang et al ³⁴ , 2015	141			0.83 (0.38, 1.81)	1.87
Total	8,477	(5	0.99 (0.89, 1.10)	100.00
Heterogeneity: r2=0.007;	X ₆ =9.22, (<i>P</i> =0.162	2); /2=34.9%		0.00 (0.00, 1.10)	
Test for overall effect: Z=0	0.22 (<i>P</i> =0.825)				
	1			1	
	.3	.5	1 2	3	

HR IV, Random (95% CI)

Nochaiwong S et al. Open Heart 2016; 3:e000441

openheart Efficacy and safety of warfarin in dialysis patients with atrial fibrillation: a systematic review and meta-analysis

STROKE/THROMBOEMBOLISM

Source	Sample Size	١	Favors Non- Varfarin Therapy	Favors Therap	Warfarin y	HR IV, Random (95% Cl)	Weight, %
Chan et al ²⁴ , 2009	1400					1.74 (1.11, 2.72)	12.39
Wizemann et al ⁹ , 2010	3,245			┽╋╋╴		1.49 (0.74, 2.24)	10.31
Winkelmayer et al ²⁵ , 2011	1,185					1.08 (0.76, 1.55)	14.41
Shah et al ²⁷ , 2014	1,626					1.17 (0.79, 1.75)	13.48
Wakasugi et al ²⁸ , 2014	32		-			3.36 (0.67, 16.66)	2.24
Chan et al ²⁹ , 2015	14,607					1.06 (0.91, 1.24)	18.68
Chan et al ³⁰ , 2015	271			\top		0.18 (0.07, 0.44)	5.56
Genovesi et al ³¹ , 2015	290	←		+		0.12 (0.01, 3.59)	0.72
Shen et al ³³ , 2015	3,658		-			0.88 (0.58, 1.32)	13.18
Wang et al ³⁴ , 2015	141			#		1.01 (0.46, 2.20)	6.95
Yodogawa et al ³⁵ , 2015	84			+		1.07 (0.20, 5.74)	2.07
Total	26,539			\diamond		1.06 (0.82, 1.36)	100.00
Heterogeneity: r ² =0.085; X	2 ₁₀ =25.50, (<i>P</i> =	0.004); <i>I</i> ²=60	0.8%				
Test for overall effect: Z=0.	42 (<i>P</i> =0.676)						
	.0)1	1 .1	1	10	100	

HR IV, Random (95% CI)

Nochaiwong S et al. Open Heart 2016; 3:e000441

openheart Efficacy and safety of warfarin in dialysis patients with atrial fibrillation: a systematic review and meta-analysis

INCREASED BLEEDING WITH WARFARIN

Nochaiwong S et al. Open Heart 2016; 3:e000441

Vitamin K antagonists for stroke prevention in hemodialysis patients with atrial fibrillation: A systematic review and meta-analysis

Hans Van Der Meersch, MD, ^a Dirk De Bacquer, PhD, ^b and An S. De Vriese, MD, PhD ^a Brugge and Ghent University, Belgium

INCREASED INTRACRANIAL BLEEDING WITH WARFARIN

Warfarin use and the risk of intracranial bleeding in hemodialysis patients with AF.

Van Der Meersch H et al. Am Heart J 2017; 184:37-46

CrossMark

Oral Anticoagulation in CKD: NOACs

- NOACs: non-inferior (sometimes superior) efficacy/safety to VKA
- All NOACs have a degree of renal excretion
- Severe CKD and ESRD patients not included in pivotal RCTs

Table 5 Main PK characteristics for oral anticoagulants and dosing recommendations, according to regulatory approvals (modified from refs (77))						
	Warfarin	Dabigatran	Apixaban	Edoxaban	Rivaroxaban	
Fraction renally excreted of absorbed dose		80%	27%	50%	35%	
Bioavailability	95–100%	3–7%	50%	62%	66% without food Almost 100% with food	
Fraction renally excreted of administered dose		4%	14%	37%	33%	
Approved for CrCl		≥30 mL/min	≥15 mL/min	≥15 mL/min	≥15 mL/min	
Dosing recommendation	CrCl ≥30 mL/min: no adjustment	CrCl ≥50 mL/min: no adjustment (i.e. 150 mg b.i.d.)	Serum creatinine ≥1.5 mg/dL: no adjustment (i.e. 5 mg b.i.d.)	60 mg daily for CrCl 50–95 mL/min, 30 mg daily for CrCl 15–50 mL/min, weight ≤60 kg; not recommended for CrCl >95 mL/min	CrCl ≥50 mL/min: no adjustment (i.e. 20 mg qd)	
Dosing if CKD	When CrCl < 30 mL/ min: use lower doses and monitor closely	When CrCl 30–49 mL/min, 150 mg b.i.d. is possible (SmPC) but 110 mg b.i.d. is recommended if high risk of bleeding ⁷⁹	CrCl 15-29 mL/min: 2.5 mg b.i.d. Serum creatinine \geq 1.5 mg/dL in combination with age of \geq 80 years or weight \leq 60 kg. (SmPC) or with other factors that increase bleeding risk (e.g. diltiazem): 2.5 mg b.i.d.	60 mg daily for CrCl 50−95 mL/min, 30 mg daily for CrCl 15−50 mL/min, weight ≤60 kg; not recommended for CrCl >95 mL/min	15 mg q.d. when CrCl 15–49 mL/min	

Boriani G et al. Europace 2015; 17:1169-1196

- 79 80.

ESRD on Dialysis: Rivaroxaban Pharmacokinetics

- Dialysis has a minimal impact on the pharmacokinetics of rivaroxaban
- Bioavailability of rivaroxaban is similar between ESRD subjects and healthy volunteers
- The changes in PK and PD parameters were generally comparable to those observed in patients with moderate-to-severe renal impairment who were not undergoing dialysis

Dias C et al. Am J Nephrol 2016; 43:229-236

ESRD on Dialysis: Apixaban Pharmacokinetics

- Minimal effect of Dialysis on Apixaban PK
- Apixaban 2.5-mg twice daily had similar PK indices in dialysis patients as 5 mg twice daily in patients with preserved renal function

US FDA Approved Labels for NOACs in ESRD on Dialysis

Revised Approval based on very limited data from small (<n=10) pharmacokinetic studies in patients with ESRD on dialysis without clinical safety data

Apixaban Package Insert for Atrial Fibrillation (Revised Oct 2017) Patients with End-Stage Renal Disease on Dialysis

Clinical efficacy and safety studies with ELIQUIS did not enroll patients with end-stage renal disease (ESRD) on dialysis. In patients with ESRD maintained on intermittent hemodialysis, administration of ELIQUIS at the usually recommended dose [see Dosage and Administration (2.1)] will result in concentrations of apixaban and pharmacodynamic activity similar to those observed in the ARISTOTLE study [see Clinical Pharmacology (12.3)]. It is not known whether these concentrations will lead to similar stroke reduction and bleeding risk in patients with ESRD on dialysis as was seen in ARISTOTLE.

Rivaroxaban Package Insert for Atrial Fibrillation (Revised Feb 2018) Patients with End-Stage Renal Disease on Dialysis

Clinical efficacy and safety studies with XARELTO did not enroll patients with end-stage renal disease (ESRD) on dialysis. In patients with ESRD maintained on intermittent hemodialysis, administration of XARELTO 15 mg once daily will result in concentrations of rivaroxaban and pharmacodynamic activity similar to those observed in the ROCKET AF study [see Clinical Pharmacology (12.2, 12.3)]. It is not known whether these concentrations will lead to similar stroke reduction and bleeding risk in patients with ESRD on dialysis as was seen in ROCKET AF.

These sentences open the door for clinicians to consider apixaban or rivaroxaban in patients with ESRD

Approved European Labels for NOACs in CKD

Table 8 Approved European labels for NOACs and their dosing in CKD							
	Dabigatran	Apixaban	Edoxaban	Rivaroxaban			
Fraction renally excreted of absorbed dose	80%	27% ^{52–55}	50% ³⁶	35%			
Bioavailability	3–7%	50%	62% ⁵¹	66% without food Almost 100% with food			
Fraction renally excreted of administered dose	4%	12-29% ⁵²⁻⁵⁵	37% ³⁶	33%			
Approved for $CrCl \geq \ldots$	≥30 mL/min	≥15 mL/min	≥15 mL/min	≥15 mL/min			
Dosing recommendation	CrCl ≥ 50 mL/min: no adjustment (i.e. 150 mg BID)	Serum creatinine ≥1.5 mg/dL: no adjustment (i.e. 5 mg BID) ^a	CrCl ≥ 50 mL/min: no adjustment (i.e. 60 mg OD) ^b	CrCl ≥ 50 mL/min: no adjustment (i.e. 20 mg OD)			
Dosing if CKD	When CrCl 30–49 mL/min, 150 mg BID is possible (SmPC) but 110 mg BID should be considered (as per ESC guidelines) ⁵ Note: 75 mg BID approved in US only ^c : if CrCl 15–30 mL/min if CrCl 30–49 mL/min and other orange factor <i>Table 6</i> (e.g. verapamil)	CrCl 15–29 mL/min: 2.5 mg BID If two-out-of-three: serum creatinine ≥ 1.5 mg/dL, age ≥80 years, weight ≤60 kg: 2.5 mg BID	30 mg OD when CrCl 15–49 mL/min	15 mg OD when CrCl 15–49 mL/min			
Not recommended if	CrCl < 30 mL/min	CrCl < 15 mL/min	CrCl < 15 mL/min	CrCl < 15 mL/min			

Red: contra-indicated/not recommended. Orange: reduce dose as per label. Yellow: consider dose reduction if two or more 'yellow' factors are present (see also Table 6). CKD, chronic kidney disease; CrCl, creatinine clearance; BID, twice a day; OD, once daily; SmPC, summary of product characteristics.

^aThe SmPC specifies dose reduction from 5 to 2.5 mg BID if two of three criteria are fulfilled: age ≥80 years, weight ≤60 kg, serum creatinine >1.5 mg/dL.

^bFDA provided a boxed warning that 'edoxaban should not be used in patients with CrCL > 95 mL/min'. EMA advised that 'edoxaban should only be used in patients with high CrCl after a careful evaluation of the individual thrombo-embolic and bleeding risk' because of a trend towards reduced benefit compared to VKA.

^cNo EMA indication. FDA recommendation based on PKs. Carefully weigh risks and benefits of this approach. Note that 75 mg capsules are not available on the European market for AF indication.

Heidbuchel G et al. Europace 2015; 17:1467-1507

Do we have any clinical experience with NOACs in ESRD ?

CLINICAL EXPERIENCE Off-Label Dabigatran and Rivaroxaban in AF and ESRD on Hemodialysis

- Fresenius Medical Care North America ESRD Database
- 8064 pts Warfarin, 281 pts
 Dabigatran, 244 pts Rivaroxaban

Compared to Warfarin:

- Dabigatran and Rivaroxaban associated with higher risk of hospitalization or death from bleeding
- Differences in stroke and arterial embolism could not be assessed due to very low number of events

Chan KE et al. Circulation 2015; 131:972-979

Compared to warfarin

Apixaban in Pts with ESRD on Dialysis and AF in the US

- Retrospective study of Medicare beneficiaries included in the US Renal Data System (Oct 2010 to Dec 2015) – AF & ESRD on dialysis
- Apixaban
 44%: 5 mg BD
 56%: 2.5 mg BD

Apixaban in Pts with ESRD and AF in the US Benefit with 5 mg vs 2.5 mg BD ?

Siontis K et al. *Circulation* 2018; 138:1519-1529

Anticoagulation according to CKD stage What Do We Know?

Indication for oral anticoagulation as stroke prevention in AF (if risk factor[s] present)	RCT(s) in Broad evi	Cohort s Contradictor potentially mo CKD stage G	Cohort studies: Contradictory data and potentially more strokes in CKD stage G5 with OAT					
Efficacy and safety of NOACs versus vitamin K antagonists (VKA)	RCT: NOACs noninferior (in some cases superior) to VKAs accumulation of NC			tiated vailable in 2017 tial risk of n of NOAC				
Association between stroke risk and renal function in AF	Risk of stroke and systemic embolism							
Association between bleeding risk and renal function in AF			Bleeding risk					
	Prevalence of atrial fibrillation							
	NKD CKD G1 CKD G2	CKD G3a	CKD G3b	CKD G4	CKD G5			

Heine GH and Brandeburg V. Kidney International 2017; 91:778-780

How we can we approach anticoagulation in a patient with AF and ESRD? **CENTRAL ILLUSTRATION** Proposed Algorithm for Oral Anticoagulant Choices in Patients With Atrial Fibrillation and Chronic Kidney Disease

Address bleeding risk factors, frequent follow up, and closely monitor renal function in NOAC users

Lau, Y.C. et al. J Am Coll Cardiol. 2016;68(13):1452-64.

Pragmatic Considerations to Reduce Bleeding in ESRD Patients on Anticoagulation

- Minimize heparin with dialysis
- Use of citrate locks for dialysis catheters
- Consideration of prophylaxis for gastrointestinal bleeding when clinically indicated
- Tight blood pressure control
- Discontinuation of concurrent antiplatelet agents if clinically reasonable

Reversal of Anticoagulation

• Vitamin K antagonists (VKAs)

- Vitamin K and/or plasma

- NOACs
 - Factor concentrates for reversal (?)
 - Rivaroxaban and Apixaban
 - Andexanet alpha: FDA US approval in May 2018 Reduction of anti-Xa activity by 92% (rivaroxaban) and 94% (apixaban)
 - Dabigatran
 - Idarucizumab

LACK OF RANDOMIZED DATA Anticoagulation in ESRD

KDIGO= Kidney Disease: Improving Global Outcomes Recommendations after KDIGO International Conference

Table 2 Chronic kidney disease categories lacking randomized clinical trial data on the utility of anticoagulation^{4,63,64}

eCrCl (mL/min) ^a	Warfarin	Apixaban ^b	Dabigatran	Edoxaban	Rivaroxaban
15–30	Adjusted dose for INR 2–3 could be considered	2.5 mg PO b.i.d. could be considered	Unknown (75 mg PO b.i.d.) ^{c,d}	30 mg QD ^e could be considered	15 mg QD could be considered
<15 not on dialysis	Equipoise based on observational data and meta-analysis	Unknown (2.5 mg PO b.i.d.) ^c	Not recommended	Not recommended	Unknown (15 mg QD) ^c
<15 on dialysis	Equipoise based on observational data and meta-analysis	Unknown (2.5 mg PO b.i.d.) ^c	Not recommended	Not recommended	Unknown (15 mg QD) ^c

INR, international normalized ratio.

Dosing of direct oral anticoagulants (DOACs) based solely on limited pharmacokinetic and pharmacodynamic data (no randomized efficacy or safety data exist). ^aCockcroft-Gault estimated creatinine clearance.

^bApixaban dose needs modification to 2.5 mg b.i.d. if patient has any two of the following: serum creatinine ≥1.5 mg/dL, age ≥80 years, or body weight ≤60 kg.

^cDOAC doses listed in parenthesis are doses that do not currently have any clinical safety or efficacy data. The doses of DOACs apixaban 5 mg b.i.d.^b, rivaroxaban 15 mg QD and dabigatran 75 mg b.i.d. are included in the United States Food and Drug Administration approved labelling based on limited dose pharmacokinetic and pharmacodynamics data with no clinical safety data. We suggest consideration of the lower dose of apixaban 2.5 mg PO b.i.d. in CKD G5/G5D to reduce bleeding risk until clinical safety data are available.

^dDabigatran 75 mg available only in the USA.

^eThe dose was halved if any of the following: estimated CrCl of 30–50 mL/min, body weight of ≤60 kg, or concomitant use of verapamil or quinidine (potent P-glycoprotein inhibitors).

Upcoming OAC Clinical Trials in ESRD

- VKAs vs no oral anticoagulation
 AVKDIAL (NCT02886962)
- Apixaban vs VKAs in ESRD

 RENAL-AF (NCT02942407)
 AXADIA (NCT02933697)
- Left Atrial Appendage occlusion vs VKAs in CKD stages 4 and 5

-WatchAFIB (NCT02039167)

Thank you !