Percutaneous Coronary Intervention as Revascularisation Strategy in Advanced Chronic Kidney Disease

Michail Papafaklis, MD, PhD, FESC

Interventional Cardiologist, University Hospital of Ioannina Honorary Consultant Cardiologist, St Bartholomew's Hospital, London, UK

Stages of Chronic Kidney Disease

	Stage	Description	GFR (mL/min/1.73 m ²)
	1	Kidney damage with normal or GFR	≥90
	2	Kidney damage with mild GFR	89-60
	ЗA	Mild to moderate GFR	59-45
KD	3B	Moderate GFR	45-30
	4	Severe GFR	30-15
	5	Kidney failure	< 15 or dialysis
	CKD, chr	onic kidney disease; GFR, glomerular filtration ra	te.

C

Renal Association (www.renal.org). Accessed Feb 2019

Worse Outcomes After PCI in CKD patients Correlation with eGFR level

Papafaklis M et al. Cather Cardiovasc Intv 2007; 69:189-97

Worse Outcomes After CABG in CKD patients Association with CKD Stage

US Medicare. 2016 Annual Data Report

Trends in Coronary Revascularization in End-Stage Renal Failure

Chang T et al. *J Am Soc Nephrol* 2012; 23:2042-49

PCI as an Option of Revascularization in Advanced CKD patients

Is there any difference between PCI and CABG in Mortality and Adverse Events in the short and long term ?

Is there any difference between PCI and CABG in Acute Kidney Injury?

Advanced CKD Under-Represented in Contemporary Revascularization vs. Medicine SIHD trials

- BARI-2D: Subjects with creatinine >2 mg/dl excluded
- COURAGE: Only 16 patients with GFR <30 ml/min

Figure 1. Distribution of GFR by treatment group.

Sedlis et al. Am J Cardiol 2009;104:1647-1653

CKD is Under Represented in RCTs for CABG vs PCI

Study	Sample Size	Diabetes % (CABG)/(PCI)	CKD% (CABG)/(PCI)
ARTS (2005)	1,174	16/19	Not reported ("Severe" renal failure was exclusion)
MASS II (2007)	408	29/23	Not reported
SOS (2008)	988	15/14	Not reported
CARDIA (2010)	490	100/100	4.0/5.5
SYNTAX (2011)	1,095	35/36	7.3/4.1 (data not reported in primary study)
FREEDOM (2012)	1,900	100/100	6.7% (overall) Severe CKD and ESRF excluded

Randomized Controlled Trials of Revascularization Strategy in Patients with CKD and Multivessel CAD

- Forces us to
 - Infer outcomes from general studies on PCI vs CABG
 - Use diabetes as a surrogate (conflate / extrapolate results)
 - Look at non-randomized data

Meta-analysis of 58 studies ≈55000 CKD patients with Revascularization

PCI advantage over CABG for Short-term Mortality

	CAB	PC	I		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Agirbasli 2000	9 130		2	2 122		4.22 [0.93, 19.16]	•
Chan 2015	28 893		38	893	9.1%	0.74 [0.46, 1.19]	
Charytan 2006	23	23 130		322	8.0%	2.59 [1.50, 4.48]	
CREDO-Kyoto 2014	7 130		7	258	3.4%	1.98 [0.71, 5.54]	
Eisenstein 2009	18 46		469 21 46		7.0%	0.84 [0.46, 1.56]	
Herzog 1999	930	7419	371	6887	16.3%	2.33 [2.07, 2.61]	•
Herzog 2002	572	6668	175	4280	15.5%	2.10 [1.78, 2.47]	•
Ivens 2001	3	65	0 40 0.5% 4.3		4.35 [0.23, 82.05]	· · · · · · · · · · · · · · · · · · ·	
Khoso 2014	8	74	10	85	4.4%	0.92 [0.38, 2.21]	
MIDAS 2012	45	536	52	1649	10.9%	2.66 [1.81, 3.92]	
Ohmoto 1999	7	47	1	92	1.0%	13.70 [1.74, 108.11]	
Oyama 2013	6	35	31	120	5.1%	0.66 [0.30, 1.46]	
Shroff 2013	507	6178	573	16855	16.3%	2.41 [2.15, 2.71]	-
Sunagawa 2010	1	29	3	75	0.9%	0.86 [0.09, 7.95]	
Terazawa 2012	0	67	0	58		Not estimable	
Total (95% CI)		22870		32198	100.0%	1.81 [1.47, 2.24]	◆
Total events	2164		1306				
Heterogeneity: Tau ² = Test for overall effect:	0.07; Chi² Z = 5.51 (I	0.01 0.1 1 10 100 Eavors CABG Eavors PCI					

Volodarskiy A et al. Am J Med 2016; 129:1288-98

US Renal Data System (USRDS) PCI or CABG between 1997-2009 for MVD in Patients on Dialysis (N=21,981)

LIMITATIONS

- Observational study without randomization
- Medicare claims data and ICD-9 used for comorbid conditions
- No details of coronary anatomy
- No information on medication
- BMS and 1st generation DES in PCI

SYNTAX substudy - CKD: 5-year outcomes

1st generation DES (Taxus)

309 patients with CKD

Milojevic M et al. EuroIntervention 2018; 14:102-111

SYNTAX substudy - CKD: 5-year outcomes

1st generation DES (Taxus)

Comparable outcomes for Death/Stroke/MI Difference in MACCE driven by Repeat Revascularization

Milojevic M et al. EuroIntervention 2018; 14:102-111

SYNTAX substudy - CKD: 5-year outcomes

1st generation DES (Taxus)

Negative impact of CKD stronger in PCI compared to CABG especially in **Diabetic patients**

Milojevic M et al. EuroIntervention 2018; 14:102-111

Syntax Score II

Creatinine clearance showed <u>weak interaction effects</u> in influencing long-term (4-year) mortality predictions with CABG and PCI

	Multivariable adjusted HR	Interaction effect (HR _{PG} /HR _{CABG}); HR (95% CI; p value)	
	CABG 4-year mortality	PCI 4-year mortality	
Development population , SYNTAX trial (n=1800)			
Anatomical SYNTAX score (per 10 point increase)	0.97 (0.79–1.18)	1.27 (1.08–1.50)	1·32 (1·01–1·71; p=0·039)
Age (per 10 year increase)	1.88 (1.34–2.64)	1.29 (0.97–1.71)	0·69 (0·44–1·07; p=0·095)
Creatinine clearance† (per 10 mL/min increase)	0.91 (0.77–1.07)	0.82 (0.72–0.93)	0·89 (0·73–1·10; p=0·30)
LVEF (per 10% increase)	0.84 (0.61–1.16)	0.56 (0.43-0.73)	0·67 (0·44-1·00; p=0·053)
Peripheral vascular disease*	2.79 (1.66–4.71)	2.79 (1.72–4.53)	1·00 (0·49-2·04; p=1·00)
ULMCA disease	1.47 (0.93–2.34)	0.82 (0.54–1.23)	0·56 (0·30-1·03; p=0·062)
Women	0.59 (0.32–1.10)	1.70 (1.11–2.60)	2·87 (1·35–6·07; p=0·0059)
COPD	2.84 (1.64–4.90)	1.35 (0.74–2.47)	0·48 (0·21-1·08; p=0·074)
External validation population, DELTA registry (n=2891)			
Anatomical SYNTAX score (per 10 point increase)	1.12 (0.95–1.32)	1.32 (1.20–1.46)	1·18 (0·98–1·42; p=0·083)
Age (per 10 year increase)	1.46 (1.15–1.85)	1·34 (1·19–1·52)	0·92 (0·70-1·21; p=0·56)
Creatinine clearance (per 10 mL/min increase)	0.91 (0.78–1.06)	0·93 (0·86–1·00)	1·02 (0·86–1·21; p=0·82)
LVEF (per 10% increase)	0.59 (0.47–0.75)	0.57 (0.50-0.65)	0·96 (0·72–1·27; p=0·75)
Peripheral vascular disease	1.37 (0.68–2.79)	1.77 (1.01–3.09)	1·29 (0·51–3·22; p=0·59)
Women	0.52 (0.31–0.87)	1.09 (0.82–1.46)	2·09 (1·16-3·76; p=0·014)
COPD	3.63 (1.31–10.04)	1.97 (0.88–4.42)	0·54 (0·20–1·47; p=0·23)

Farooq V et al. *Lancet* 2013; 381:639-50

Revascularization in Patients With Multivessel Coronary Artery Disease and Chronic Kidney Disease

Everolimus-Eluting Stents Versus Coronary Artery Bypass Graft Surgery

5920 patients eGFR<60ml/min & MVD Propensity-matched Analysis

Bangalore S et al. JACC 2015; 66:1209-20

PCI (EES) vs CABG for MVD in CKD

Bangalore S et al. JACC 2015; 66:1209-20

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2019 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Impact of Chronic Kidney Disease on Outcomes of Myocardial Revascularization in Patients With <u>Diabetes</u>

Limitations

- Older alongside newer generation of stents
- No data on cause of death
- Relatively small subgroup of severe CKD

Farkouh M et al. *JACC* 2019; 73:400-11

Pooled analysis in <u>Diabetic Patients</u> with Stable Coronary Artery Disease MACCE

Adjusted Risk of MACCE at 5 Years by Treatment

В

No significant differences in MACCE between CABG and PCI for patients with DM and CKD on optimal medical therapy

Farkouh M et al. JACC 2019; 73:400-11

Left Main Revascularization With PCI or CABG in Patients With Chronic Kidney Disease

EXCEL Trial

- Significant LM disease
- Syntax Score ≤32
- Everolimus-eluting stents used during PCI

Distribution of eGFR in EXCEL Trial

30-day Events	Chronic Kidney Disease (n = 361)										
	PCI (n = 177)	CABG (n = 184)	Hazard Ratio (95% CI)	p Value							
Major adverse events, any	10.9 (19)	29.8 (54)	0.36 (0.23-0.59)	<0.0001							
Death	1.1 (2)	1.7 (3)	0.69 (0.12-4.08)	1.00							
Myocardial infarction	4.0 (7)	6.6 (12)	0.60 (0.24-1.50)	0.27							
Stroke	1.1 (2)	1.7 (3)	0.69 (0.12-4.08)	1.00							
Transfusion of $\geq 2 \text{ U blood}$	6.3 (11)	24.3 (44)	0.26 (0.14-0.48)	<0.0001							
TIMI major or minor bleeding	3.4 (6)	12.2 (22)	0.28 (0.12-0.68)	0.002							
Major arrhythmia	2.3 (4)	19.9 (36)	0.11 (0.04-0.32)	<0.0001							
Unplanned coronary revascularization for ischemia	1.1 (2)	2.2 (4)	0.52 (0.10-2.79)	0.69							
Any unplanned surgery or therapeutic radiological procedure	0.6 (1)	8.3 (15)	0.07 (0.01-0.52)	0.0004							
Acute renal failure*	2.3 (4)	7.7 (14)	0.30 (0.10-0.88)	0.02							

Giustino G et al. JACC 2018; 72:754-65

Left Main Revascularization With PCI or CABG in Patients With Chronic Kidney Disease

EXCEL Trial

Acute Renal Failure at 30 Days was significantly increased in the CABG group

	Chro	nic Kidney Dise	ease (n = 361)	No Chro			
	PCI (n = 177)	CABG (n = 184)	Hazard Ratio (95% CI)	PCI (n = 757)	CABG (n = 751)	Hazard Ratio (95% Cl)	Pinteraction
Acute renal failure*	2.3 (4)	7.6 (14)	0.28 (0.09-0.87)	0.3 (2)	1.3 (10)	0.20 (0.04-0.90)	0.71
New requirement for dialysis	1.1 (2)	5.4 (10)	0.20 (0.04-0.92)	0.1 (1)	0.5 (4)	0.25 (0.03-2.22)	0.87
Hemodialysis	0.6 (1)	2.7 (5)	0.20 (0.02-1.76)	0.1 (1)†	0.4 (3)	0.33 (0.03-3.18)	0.76
CVVH	0.6 (1)	2.7 (5)	0.20 (0.02-1.76)	0.1 (1)†	0.1 (1)	0.99 (0.06-15.89)	0.38

TABLE 6 Acute Renal Failure at 30 Days in Patients With or Without CKD Undergoing PCI Versus CABG

Values are % (n) unless otherwise indicated. *Defined as the rise in serum creatinine >5 mg/dl or a new requirement for dialysis. †One patient in the no chronic kidney disease group had both CVVH and hemodialysis.

CVVH = continuous venovenous hemofiltration; other abbreviations as in Table 4.

Left Main Revascularization With PCI or CABG in Patients With Chronic Kidney Disease

EXCEL Trial

MACE up to 3 years

Giustino G et al. JACC 2018; 72:754-65

PCI and CABG: Both "acceptable" strategies

CENTRAL ILLUSTRATION Left Main Revascularization and Chronic Kidney Disease

Summary

- Clinical outcomes in CKD are worse after either PCI or CABG
- Under-representation of CKD patients in large RCTs
- Short-term adverse events are less after PCI vs CABG
 - Acute kidney injury is favorable after PCI compared to CABG
- Long-term mortality (or combined with MI/Stroke) is comparable between PCI and CABG in recent studies (with a numerical trend favoring CABG)

PCI seems to be a reasonable and acceptable option in CKD patients

BUT, currently there are no randomized data of which revascularization strategy is better in CKD patients

ISCHEMIA-CKD Randomized Trial

ISCHEMIA-CKD will be the <u>largest treatment strategy trial</u> in advanced CKD patients with stable ischemic heart disease

										1				•	•	÷.,	÷.,	1	1				•	•	•	•	•	•	•						· ·	•	· ·	1	۰.
		÷.					•		•	•	•	•	•		•	•	•	•	+		•	•	•	•	•	•	•	•	•		•	•	•	•				•	•
					•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					
							•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					
							•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						
																			•																				
																											ě		ě.										
									-					-		-	-		-	-	-		-	-		-	-	ž	-	-	-	-							
						-	-	-	-						-	-	-	-	-	-	-	-		-	-		-				-	-	-	-					
			Į.	1		-	-	-								-		-	-	-	-	-	-	-	-			-	-		-	-	-	-				1	
				1		-	-							-	-	-	-	-	-	-	-	-	-				-	-			-	-	-						
			Ľ			-	-									-	-	-	-	-	-	-	-				-	-			-		-	-					
		•				-	-	-							-		-		-		-		-					-		-	-	-	-	-	-			•	
		•	•		-	-		-				-			-		<u> </u>		-	-			-	-			-	-	-		-	-	-	-	•		•	•	•
		•	•	•		-			-							-	-	-	-				-	-	-			-	-	•	-	-	•	•	•	•	•	•	•
	•	•	•	•	•	-	•	-								-	•		-		-							-		•	•	•	-		•	•		•	•
1		•	•	•	•	•	•	•			-		•	•		•	-		-	•	-	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•		•	•	•	•	•	•	•	•	•	•			•	•	•	•		•	•	•		-	•	•	•	•	•	•	•	•	•	•	•	•
1	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•
1	• •	•	•	•	•	•	٠	•	•	•	•		•	•		•			•	•	•					•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	٠	٠	٠		•	•	•	•					•	•	•						•	•	•	•		•	•	•	•		•	•	•
	• •	•	•	•	•	•	•	•		•	•	•	•	•							•			•				٠	٠	•	•	•	•	•	•	•	•	•	•
	•	•		•	•	•	•	•	•	٠	•	٠		٠	٠	•	•	۲	•	•	•		•	٠	٠	•	٠	٠	٠	٠	•	•	•	•	•		•		•
	• •	•	•	•	•	•	•	•	•	•	٠	•	٠	•	٠	•	•	•			•	٠	٠	٠	٠	٠	٠		•	•	•	•		•	•	•	•	•	•
	•	•	•		•	•	•	•	•	•	•		•	٠	٠	٠	٠	٠			٠	٠	٠	٠		٠	٠	•	•	•	•	•	•	•	•	•	•	•	•
	• •	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠		٠	•	٠	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
	• •	•		•	•		•	•	•	•	•	•	•	•	•	٠	٠		٠	٠	٠	٠	٠	٠	•	•		•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•		•				•		•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•
			•		•		•		•			•					•	•		•						•					•	•	•		•	•	•	•	•
		•	•				•	•	•			•																	•	•	•	•		•					•

Σας ευχαριστώ !