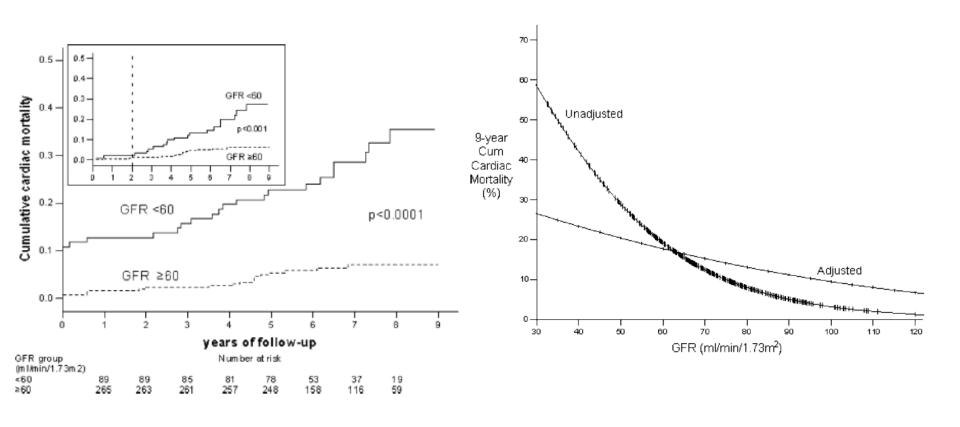
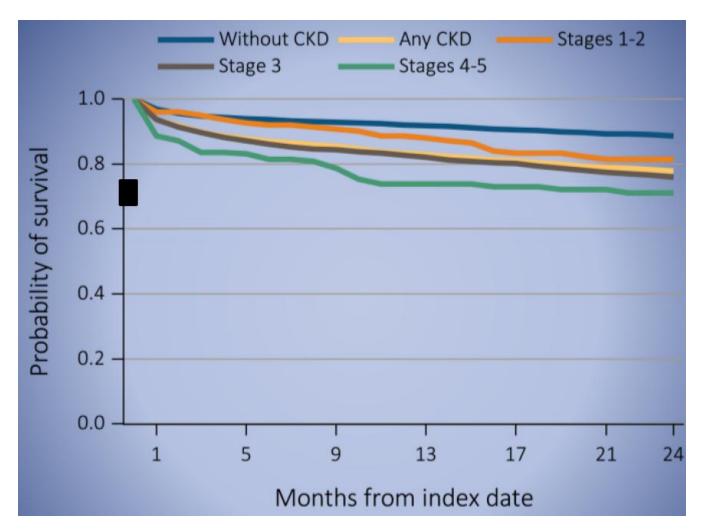


Michail Papafaklis, MD, PhD, FESC

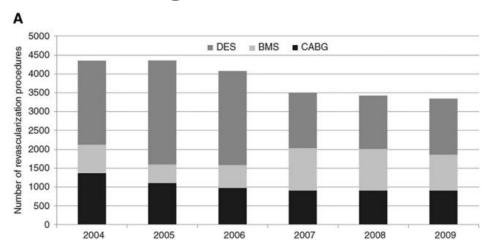

Interventional Cardiologist, University Hospital of Ioannina Honorary Consultant Cardiologist, St Bartholomew's Hospital, London, UK

Stages of Chronic Kidney Disease

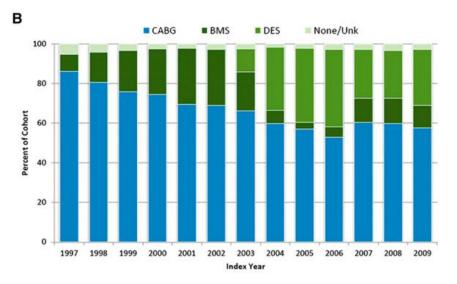

	Stage	Description	GFR (mL/min/1.73 m ²)	
	1	Kidney damage with normal or GFR	≥ 90	
	2	Kidney damage with mild GFR	89-60	
CKD	ЗА	Mild to moderate GFR	59-45	
	3B	Moderate GFR	45-30	
	4	Severe GFR	30-15	
	5	Kidney failure	< 15 or dialysis	ESI
	OKD			

Renal Association (www.renal.org). Accessed Feb 2019

Worse Outcomes After PCI in CKD patients Correlation with eGFR level



Worse Outcomes After CABG in CKD patients Association with CKD Stage



Trends in Coronary Revascularization in End-Stage Renal Failure

Trends in Coronary Revascularization

Trends in Multivessel Revascularization

PCI as an Option of Revascularization in Advanced CKD patients

Is there any difference between PCI and CABG in Mortality and Adverse Events in the short and long term?

Is there any difference between PCI and CABG in Acute Kidney Injury?

Advanced CKD Under-Represented in Contemporary Revascularization vs. Medicine SIHD trials

BARI-2D: Subjects with creatinine >2 mg/dl excluded

COURAGE: Only 16 patients with GFR <30 ml/min

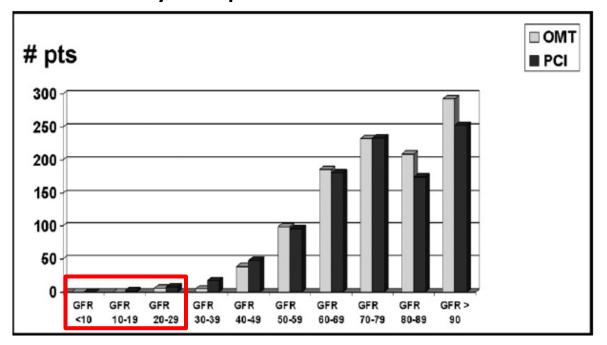
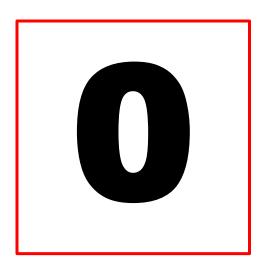
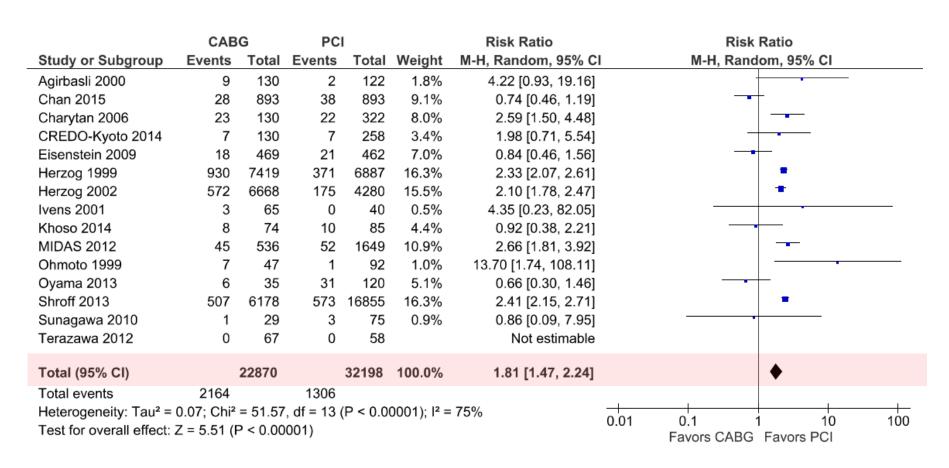



Figure 1. Distribution of GFR by treatment group.

CKD is Under Represented in RCTs for CABG vs PCI

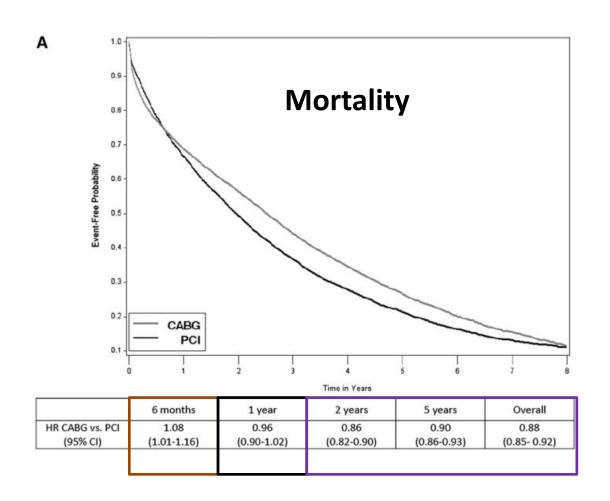
Study	Sample Size	Diabetes % (CABG)/(PCI)	CKD% (CABG)/(PCI)
ARTS (2005)	1,174	16/19	Not reported ("Severe" renal failure was exclusion)
MASS II (2007)	408	29/23	Not reported
SOS (2008)	988	15/14	Not reported
CARDIA (2010)	490	100/100	4.0/5.5
SYNTAX (2011)	1,095	35/36	7.3/4.1
FREEDOM (2012)	1,900	100/100	6.7% (overall) Severe CKD and ESRF excluded

Randomized Controlled Trials of Revascularization Strategy in Patients with CKD and Multivessel CAD



Forces us to

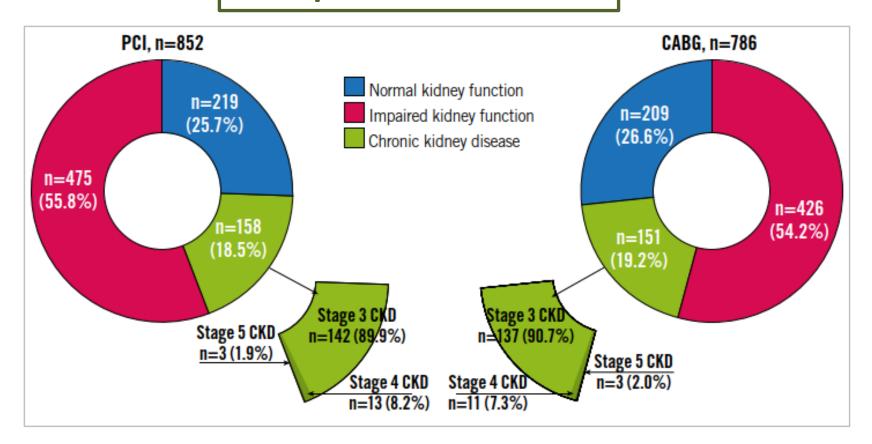
- Infer outcomes from general studies on PCI vs CABG
- Use diabetes as a surrogate (conflate / extrapolate results)
- Look at non-randomized data


Meta-analysis of 58 studies ≈55000 CKD patients with Revascularization

PCI advantage over CABG for Short-term Mortality

US Renal Data System (USRDS) PCI or CABG between 1997-2009 for MVD in

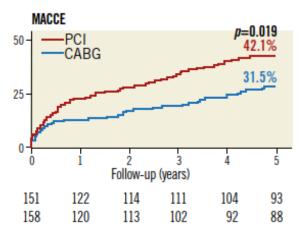
Patients on Dialysis (N=21,981)

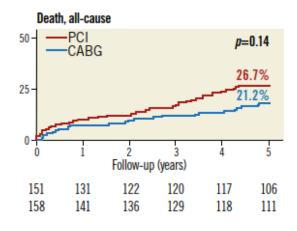

LIMITATIONS

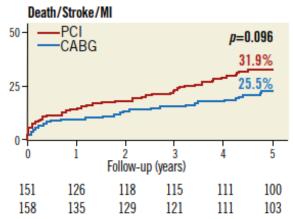
- Observational study without randomization
- Medicare claims data and ICD-9 used for comorbid conditions
- No details of coronary anatomy
- No information on medication
- BMS and 1st generation DES in PCI

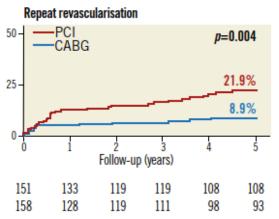
SYNTAX substudy - CKD: 5-year outcomes

1st generation DES (Taxus)

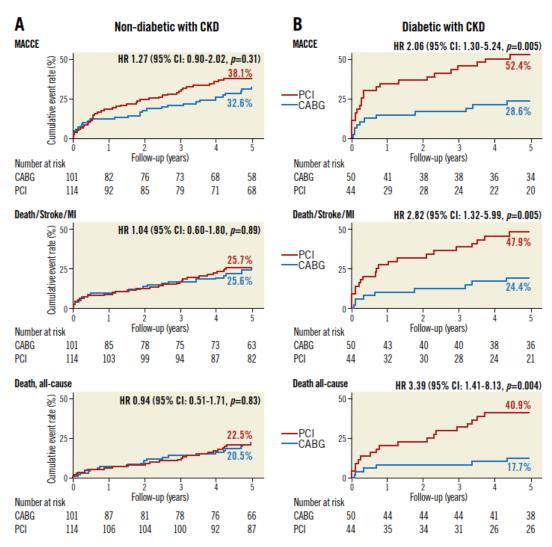

309 patients with CKD




SYNTAX substudy - CKD: 5-year outcomes


1st generation DES (Taxus)

Comparable outcomes for Death/Stroke/MI Difference in MACCE driven by Repeat Revascularization



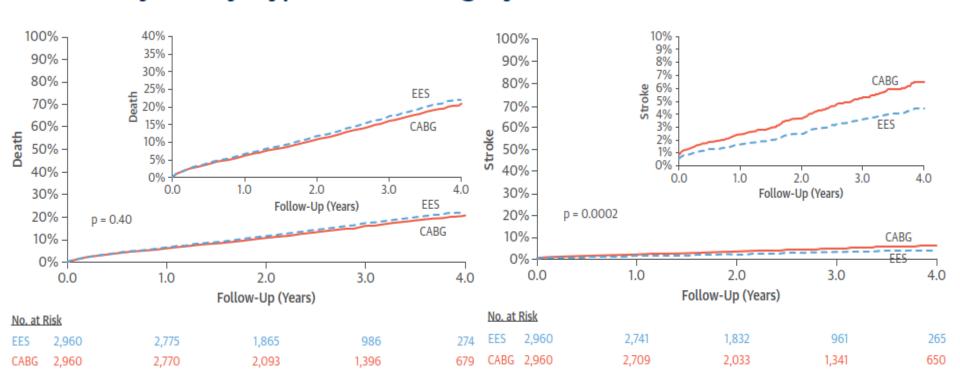
SYNTAX substudy - CKD: 5-year outcomes

1st generation DES (Taxus)

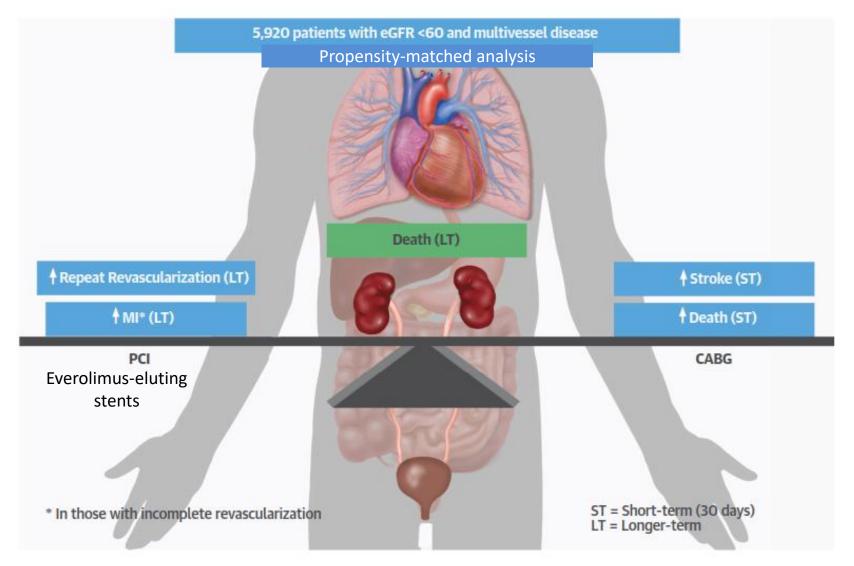
Negative impact of CKD stronger in PCI compared to CABG especially in Diabetic patients

Syntax Score II

Creatinine clearance showed <u>weak interaction effects</u> in influencing long-term (4-year) mortality predictions with CABG and PCI


	Multivariable adjusted H	Multivariable adjusted HR (95% CI)		
	CABG 4-year mortality	PCI 4-year mortality		
Development population , SYNTAX trial (n=1800)				
Anatomical SYNTAX score (per 10 point increase)	0.97 (0.79–1.18)	1.27 (1.08–1.50)	1·32 (1·01–1·71; p=0·039)	
Age (per 10 year increase)	1.88 (1.34-2.64)	1.29 (0.97–1.71)	0.69 (0.44-1.07; p=0.095)	
Creatinine clearance† (per 10 mL/min increase)	0.91 (0.77–1.07)	0.82 (0.72-0.93)	0.89 (0.73-1.10; p=0.30)	
LVEF (per 10% increase)	0.84 (0.61–1.16)	0.56 (0.43-0.73)	0.67 (0.44-1.00; p=0.053)	
Peripheral vascular disease*	2.79 (1.66-4.71)	2.79 (1.72-4.53)	1·00 (0·49-2·04; p=1·00)	
ULMCA disease	1.47 (0.93-2.34)	0.82 (0.54-1.23)	0.56 (0.30-1.03; p=0.062)	
Women	0.59 (0.32-1.10)	1.70 (1.11-2.60)	2·87 (1·35–6·07; p=0·0059)	
COPD	2.84 (1.64-4.90)	1.35 (0.74-2.47)	0·48 (0·21-1·08; p=0·074)	
External validation population, DELTA registry (n=2891)				
Anatomical SYNTAX score (per 10 point increase)	1.12 (0.95–1.32)	1.32 (1.20–1.46)	1·18 (0·98-1·42; p=0·083)	
Age (per 10 year increase)	1.46 (1.15–1.85)	1.34 (1.19-1.52)	0·92 (0·70–1·21; p=0·56)	
Creatinine clearance (per 10 mL/min increase)	0.91 (0.78–1.06)	0.93 (0.86–1.00)	1·02 (0·86–1·21; p=0·82)	
LVEF (per 10% increase)	0.59 (0.47-0.75)	0.57 (0.50-0.65)	0.96 (0.72-1.27; p=0.75)	
Peripheral vascular disease	1.37 (0.68-2.79)	1.77 (1.01–3.09)	1·29 (0·51–3·22; p=0·59)	
Women	0.52 (0.31-0.87)	1.09 (0.82-1.46)	2·09 (1·16-3·76; p=0·014)	
COPD	3.63 (1.31-10.04)	1.97 (0.88-4.42)	0·54 (0·20-1·47; p=0·23)	

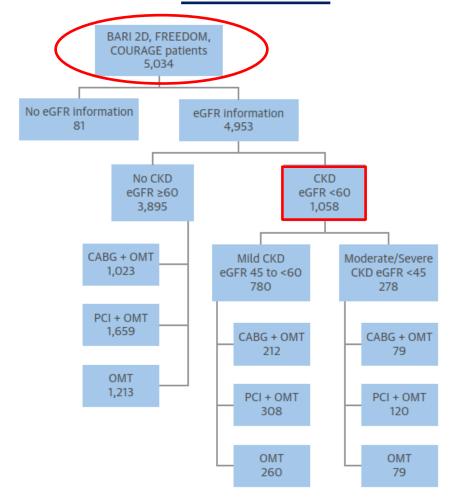
Farooq V et al. *Lancet* 2013; 381:639-50


Revascularization in Patients With Multivessel Coronary Artery Disease and Chronic Kidney Disease

Everolimus-Eluting Stents Versus
Coronary Artery Bypass Graft Surgery

5920 patients eGFR<60ml/min & MVD Propensity-matched Analysis

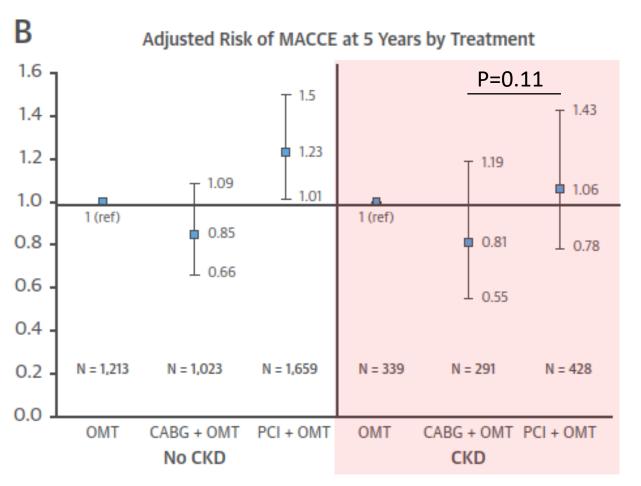
PCI (EES) vs CABG for MVD in CKD



Bangalore S et al. *JACC* 2015; 66:1209-20

PUBLISHED BY ELSEVIER

Impact of Chronic Kidney Disease on Outcomes of Myocardial Revascularization in Patients With Diabetes

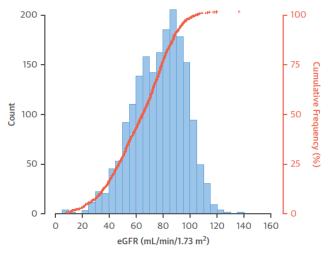


Limitations

- Older alongside newer generation of stents
- No data on cause of death
- Relatively small subgroup of severe CKD

Farkouh M et al. *JACC* 2019; 73:400-11

Pooled analysis in <u>Diabetic Patients</u> with Stable Coronary Artery Disease <u>MACCE</u>



No significant differences in MACCE between CABG and PCI for patients with DM and CKD on optimal medical therapy

Left Main Revascularization With PCI or CABG in Patients With Chronic Kidney Disease

EXCEL Trial

- Significant LM disease
- Syntax Score ≤32
- Everolimus-eluting stents used during PCI

Distribution of eGFR in EXCEL Trial

30-day Events	Chronic Kidney Disease (n = 361)				
30 day Events	PCI (n = 177)	CABG (n = 184)	Hazard Ratio (95% CI)	p Value	
Major adverse events, any	10.9 (19)	29.8 (54)	0.36 (0.23-0.59)	< 0.0001	
Death	1.1 (2)	1.7 (3)	0.69 (0.12-4.08)	1.00	
Myocardial infarction	4.0 (7)	6.6 (12)	0.60 (0.24-1.50)	0.27	
Stroke	1.1 (2)	1.7 (3)	0.69 (0.12-4.08)	1.00	
Transfusion of ≥2 U blood	6.3 (11)	24.3 (44)	0.26 (0.14-0.48)	< 0.0001	
TIMI major or minor bleeding	3.4 (6)	12.2 (22)	0.28 (0.12-0.68)	0.002	
Major arrhythmia	2.3 (4)	19.9 (36)	0.11 (0.04-0.32)	< 0.0001	
Unplanned coronary revascularization for ischemia	1.1 (2)	2.2 (4)	0.52 (0.10-2.79)	0.69	
Any unplanned surgery or therapeutic radiological procedure	0.6 (1)	8.3 (15)	0.07 (0.01-0.52)	0.0004	
Acute renal failure*	2.3 (4)	7.7 (14)	0.30 (0.10-0.88)	0.02	

Giustino G et al. JACC 2018; 72:754-65

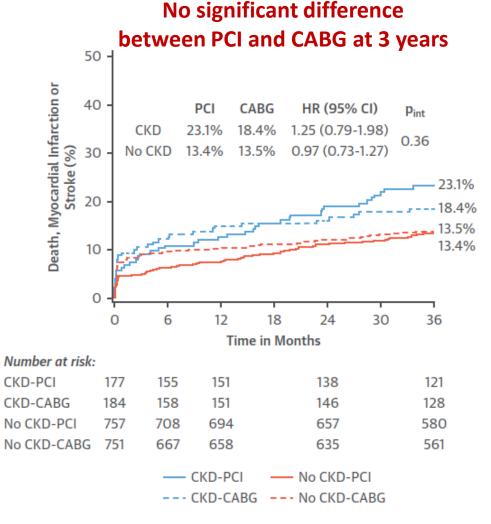
Left Main Revascularization With PCI or CABG in Patients With Chronic Kidney Disease

EXCEL Trial

Acute Renal Failure at 30 Days was significantly increased in the CABG group

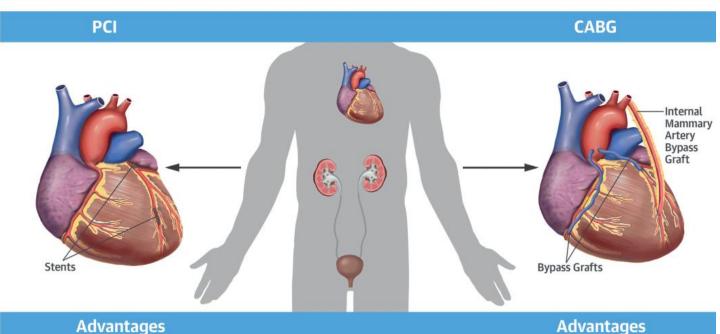
TABLE 6 Acute Renal Failure at 30 Days in Patients With or Without CKD Undergoing PCI Versus CABG

	Chronic Kidney Disease (n = 361)		No Chronic Kidney Disease (n $=$ 1,508)				
	PCI (n = 177)	CABG (n = 184)	Hazard Ratio (95% CI)	PCI (n = 757)	CABG (n = 751)	Hazard Ratio (95% CI)	P _{interaction}
Acute renal failure*	2.3 (4)	7.6 (14)	0.28 (0.09-0.87)	0.3 (2)	1.3 (10)	0.20 (0.04-0.90)	0.71
New requirement for dialysis	1.1 (2)	5.4 (10)	0.20 (0.04-0.92)	0.1 (1)	0.5 (4)	0.25 (0.03-2.22)	0.87
Hemodialysis	0.6 (1)	2.7 (5)	0.20 (0.02-1.76)	0.1 (1)†	0.4 (3)	0.33 (0.03-3.18)	0.76
CVVH	0.6 (1)	2.7 (5)	0.20 (0.02-1.76)	0.1 (1)†	0.1 (1)	0.99 (0.06-15.89)	0.38


Values are % (n) unless otherwise indicated. *Defined as the rise in serum creatinine >5 mg/dl or a new requirement for dialysis. †One patient in the no chronic kidney disease group had both CVVH and hemodialysis.

CVVH = continuous venovenous hemofiltration; other abbreviations as in Table 4.

Left Main Revascularization With PCI or CABG in Patients With Chronic Kidney Disease


EXCEL Trial

MACE up to 3 years

PCI and CABG: Both "acceptable" strategies

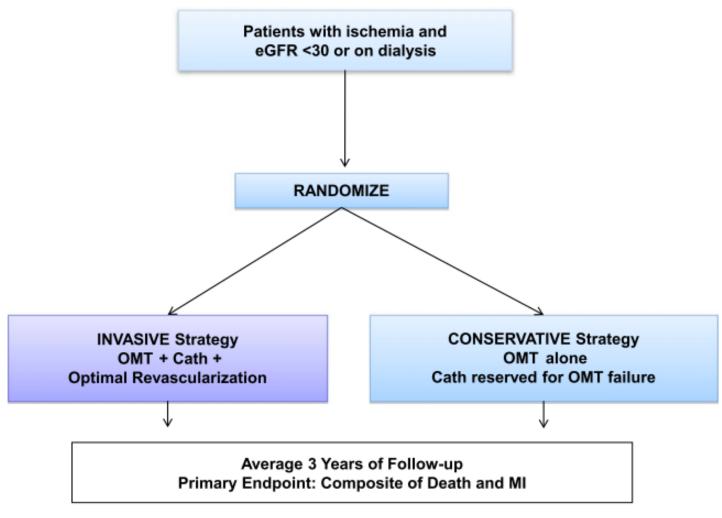
CENTRAL ILLUSTRATION Left Main Revascularization and Chronic Kidney Disease

Similar death, MI,

or stroke at 3 years

- In-hospital major adverse events including acute renal failure and requirement for dialysis
- Duration of in-hospital stay
- \$ 30-day death, MI, or stroke
- 1 3-year stent thrombosis vs. graft occlusion

- ↓ 3-year revascularization
- ↓ 30-day to 3-year death, MI, or stroke


Summary

- Clinical outcomes in CKD are worse after either PCI or CABG
- Under-representation of CKD patients in large RCTs
- Short-term adverse events are less after PCI vs CABG
 - Acute kidney injury is favorable after PCI compared to CABG
- Long-term mortality (or combined with MI/Stroke) is comparable between PCI and CABG in recent studies (with a numerical trend favoring CABG)

PCI seems to be a reasonable and acceptable option in CKD patients

BUT, currently there are no randomized data of which revascularization strategy is better in CKD patients

ISCHEMIA-CKD Randomized Trial

ISCHEMIA-CKD will be the <u>largest treatment strategy trial</u> in advanced CKD patients with stable ischemic heart disease

Σας ευχαριστώ!